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This paper proposes a micromechanical approach aimed at identifying the response of unidirectional
fuzzy fiber composites undergoing inelastic fields. Fuzzy fibers are reinforcement fibers coated with radi-
ally aligned straight or wavy carbon nanotubes grown through chemical deposition process (PVD or
CVD). Due to this nature, the composite with fuzzy fibers is described by three scales: i) the microscale
consisting of carbon nanotubes and their surrounding matrix, ii) the mesoscale containing the fiber, the
nanocomposite and the matrix, and iii) the macroscale related to the overall fuzzy fiber composite. The
developed framework considers for the mesoscopic scale an analytical formulation, based on the compos-
ite cylinders assemblage (CCA) method, combining the principles of the Transformation Field Analysis
(TFA) technique. A numerical example that includes comparisons with full field homogenization strate-
gies confirms the accuracy of the framework to predict the overall response, as well as the average local
fields of the constituents.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The exceptional mechanical and physical properties of carbon
nanotubes (CNTs) determined experimentally or estimated (Shen
and Li, 2004; Xiao et al., 2005; Batra and Sears, 2007), encouraged
the extensive research production for the development of CNT-
reinforced composites. In this spirit, composites including fuzzy
fibers, i.e. carbon, glass or ceramic fibers coated with CNTs
(Fig. 1), have been recently the subject of a plethora of publications
due to the increasing interest for applications in aerospace, energy,
infrastructure and health monitoring, among other areas (Sager
et al., 2009; Sebastian et al., 2014; Hart et al., 2017).

Several modeling efforts have been conducted the last decade to
identify different types of behavior of such composites, namely
elastic (Chatzigeorgiou et al., 2011; Kundalwal and Ray, 2011;
Kundalwal and Ray, 2012; Chatzigeorgiou et al., 2012), thermoelas-
tic (Kundalwal and Ray, 2014; Kundalwal and Meguid, 2015) and
electromechanical (Seidel et al., 2014; Dhala and Ray, 2015; Ren
et al., 2015). Since the fibers are coated with the nanotubes, the
interlayer (usually called nanocomposite) can be seen as a compos-
ite consisting of carbon nanotubes in radial arrangement on the
surface of fibers inside the matrix. Thus, the nanocomposite can
be treated as a separate heterogeneous material with cylindrically
orthotropic response. As a consequence, the fuzzy fiber can be
studied as two concentric cylinders (fiber and nanocomposite)
embedded into the matrix, with the coating layer being a heteroge-
neous medium. Thus, the total composite is a three scale medium,
with micro-(CNTs embedded in matrix), meso-(fuzzy fiber embed-
ded in matrix) and macro- (composite) scales (Fig. 2).

Experimental and theoretical studies on the interphase strength
between the matrix and the reinforcement are an extensive
research topic. The background for developing a theory of fiber
composites with enhanced fibers was the development of elasticity
solutions for heterogeneous cylindrical fibers and the determina-
tion of the elastic deformation of composite cylinders with cylin-
drically orthotropic layers. The fundamental solutions for fibers
embedded in a matrix by Hashin and Rosen (1964), Christensen
and Lo (1979), Avery and Herakovich (1986), Hashin (1990) allow
for predicting effective elastic and thermoelastic properties. The
composite cylinder assemblage (CCA) approach, introduced by
Hashin and Rosen (1964), remains a powerful tool for the predic-
tion of effective properties of fiber composites. The three phases
model, consisting of a cylindrically orthotropic cylinder, a coating
with several degrees of anisotropy and a matrix, has been studied
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Fig. 1. A single fuzzy fiber with densely-packed CNTs on the surface. Reprinted by
permission from Springer Nature: Multiscale Modeling of Multifunctional Fuzzy
Fibers based on Multi-Walled Carbon Nanotubes, in ‘‘Modeling of Carbon Nan-
otubes, Graphene and their Composites”, Tserpes, K. I., Silvestre, N. P. (Eds.), Vol.
188 of Springer Series in Materials Science, by Seidel G.D., Chatzigeorgiou G., Ren X.,
Lagoudas D.C., 2014.
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and its effective thermoelastic behavior has been analyzed (Chen
et al., 1990; Hashin, 1990).

The presence of a cylindrically orthotropic interphase layer in a
fiber composite has been introduced by Honjo (2007). Explicit
expressions for stress and displacements in a multilayered hollow
cylinder with orthotropic elastic layers have been provided by
Tsukrov and Drach (2010). The special case of a fiber composite
in which each fiber is surrounded by cylindrically orthotropic lay-
ers has been investigated by Tsukrov et al. (2012) in order to ana-
lyze the influence of anisotropy and inhomogeneity of the layers on
the fibers. In Chatzigeorgiou et al. (2011), a two step asymptotic
expansion homogenization scheme in cylindrical (for the layer)
and Cartesian coordinates has been presented. Chatzigeorgiou
et al. (2012) proposed the approximate locally periodic homoge-
nization for fiber composites with cylindrical geometry. In
Chatzigeorgiou et al. (2012), the same problem has been investi-
gated via the CCA method. In the latter article, the reinforced inter-
phase is assumed to behave as a transversely isotropic medium
with the axis of symmetry parallel to the axis of CNTs.
Kundalwal and Ray (2011) have analyzed the fuzzy fiber composite
response using Mori–Tanaka, by substituting the interphase layer
with an equivalent transversely isotropic medium with the axis
of symmetry parallel to the axis of the fiber. The same authors have
proposed an alternative approach based on the method of cells
(Kundalwal and Ray, 2012) to investigate the influence of the CNTs
Fig. 2. Microscopic (a), mesoscopic (b) and macrosco
waviness on the overall response of the fuzzy fiber composites
(Kundalwal and Ray, 2014).

The present paper proposes amicromechanical approach for uni-
directional fuzzy fiber composites accounting for the presence of
inelastic fields. The fuzzy fibers are considered to be fibers coated
with CNTs, which are either straight orwavymicrofibers. The devel-
oped scheme is based on the CCA method, adopted for the cylindri-
cally orthotropic nature of the nanocomposite layer that surrounds
the actual fiber. Accounting for nonlinear mechanisms in analytical
micromechanical approaches is a task studied by many authors in
the literature. A popular approach addressing inelastic fields in com-
posites is the well known transformation field analysis (TFA) by
Dvorak (1992), Dvorak and Benveniste (1992), Michel and Suquet
(2003). According to this approach, the stress or the strain is split
into elastic and inelastic parts. In Chatzigeorgiou and Meraghni
(2019), a mean field multiscale approach for composites reinforced
by coated fibers exhibiting elastic and inelastic strain has been pre-
sented. It follows the TFA framework and performs twomethodolo-
gies; one is based on classical Eshelby-type methods like Mori–
Tanaka, while the second is based on the Composite Cylinders/
Spheres Assemblage homogenization strategy. The TFA approach
is extensively deployed in the present work for accounting the
inelastic fields applied to the fuzzy fiber composite.

The organization of the paper is as follows: In Section 2, the prob-
lem under consideration is described, including a general descrip-
tion of the fuzzy fiber composites, the assumptions on the material
symmetriesof thephasesandtheequationsof theproblem.Section3
presents the composite cylinders assemblage methodology for the
mesoscale problem. In Section 4, a numerical example of a fuzzy
fiber composite with wavy carbon nanotubes is presented. The con-
clusions section closes the main part of the manuscript. The trans-
formation rules between Cartesian and cylindrical coordinate
systems and computational details regarding the elastic and inelas-
tic concentration tensors are summarized in two Appendices.

2. Problem definition

The scope of this section is to describe the problem under con-
sideration. Before identifying the various scales, some preliminary
notes are required concerning the coordinate systems that are
utilized.

2.1. Preliminaries

Due to the geometrical characteristics of the fuzzy fiber com-
posite, the theoretical development appears in two different
orthogonal coordinate systems, the Cartesian and the cylindrical.
In cylindrical coordinates, the axes ðx1; x2; x3Þ are transformed to
ðr; h; zÞ, according to the relations
pic (c) scales of a fuzzy fiber composite material.
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x1 ¼ r cos h; x2 ¼ r sin h; x3 ¼ z:

For second order tensors, the adopted Voigt notation considers
the following representation: In Cartesian coordinates, 1;2 and 3
denote the normal components at the directions 1;2 and 3 respec-
tively, while the shear components 4;5 and 6 denote the shear
angles in 12;13 and 23 respectively. In cylindrical coordinates,
1;2 and 3 denote the normal components at the directions r; h
and z respectively, while the shear components 4;5 and 6 denote
the shear angles in rh; rz and hz respectively. Thus, the various
fields are expressed in vector form in the Cartesian system as

u ¼ u1 u2 u3½ �T ;
e ¼ e11 e22 e33 2e12 2e13 2e23½ �T ;
r ¼ r11 r22 r33 r12 r13 r23½ �T ;

and in the cylindrical system as

ucyl ¼ ur uh uz½ �T ;
ecyl ¼ err ehh ezz 2erh 2erz 2ehz½ �T ;
rcyl ¼ rrr rhh rzz rrh rrz rhz½ �T :

The transformation of the fields between the two coordinate sys-
tems require proper rotation tensors, which are presented in
Appendix A.
Fig. 3. (a) Unidirectional fuzzy fiber composite with straight carbon nanotubes. (b) Sch
composite with wavy carbon nanotubes. (d) Schematic of fuzzy fiber with wavy carbon
2.2. General description of the fuzzy fiber composite

Figs. 3a and 3c illustrate typical unidirectional fuzzy fiber com-
posites, in which the main fibers (made by carbon, glass or other
material) are coated with radially aligned straight (Fig. 3b) or wavy
(Fig. 3d) carbon nanotubes (CNTs). The CNTs are represented as
hollow microfibers. The fibers and the nanocomposite interphase
(CNT + matrix) are arranged in such a way that they form a unidi-
rectional lamina layer and are dispersed randomly inside the
matrix.

The fibers (phase 1) and the matrix (phase 0) are assumed to be
at most transversely isotropic with axis of symmetry parallel to the
axis of the fibers. Thus, their elasticity tensors are expressed in the
form
Li ¼ Lcyli ¼

Ktr
i þ ltr

i Ktr
i � ltr

i li 0 0 0

Ktr
i � ltr

i Ktr
i þ ltr

i li 0 0 0

li li ni 0 0 0

0 0 0 ltr
i 0 0

0 0 0 0 lax
i 0

0 0 0 0 0 lax
i

2
66666666664

3
77777777775
; i ¼ 0;1:
ematic of fuzzy fiber with straight carbon nanotubes. (c) Unidirectional fuzzy fiber
nanotubes.



Fig. 4. Microscale of the fuzzy fiber composite: (a) straight or (b) wavy carbon nanotubes in matrix.
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The material properties for these phases are the transverse bulk
modulus1, K tr

i , the transverse shear modulus, ltr
i , the axial shear

modulus, lax
i , and the coefficients li and ni. These are considered

known. It is noted that due to their construction (at most trans-
versely isotropic in the fiber direction), the above elasticity tensors
remain unchanged during the transition from cylindrical to Carte-
sian coordinates.

The fuzzy fiber composite can be considered as a three phase
medium (Fig. 2) consisting of the homogeneous fiber, the matrix
and the heterogeneous interphase (nanocomposite). The latter
contains the CNTs and matrix material. The multiscale approach
that is utilized for such medium consists of two steps. The first
homogenization step is performed on the nanocomposite and the
new medium is treated as a homogenized coating layer attached
to the main fibers. In the second step, the fibers, the coating and
the matrix constitute the mesoscale. Homogenization at the
mesoscale leads at obtaining the overall properties of the fuzzy
fiber composite.

2.3. Microscale: CNTs embedded in matrix (nanocomposite)

Fig. 4 demonstrates a sketch of the microstructure of the
nanocomposite. Its geometrical characteristics differ for straight
(Fig. 4a) or wavy (Fig. 4b) CNTs. This subsection briefly discusses
the method for obtaining the effective properties of the nanotube
reinforced interphase.

The diameter of the CNTs is at the order of nanotubes. Thus, the
validity of continuum mechanics concepts at such small scales is
questionable. However, classical homogenization strategies for
carbon nanotube reinforced composites are adopted frequently in
the literature with quite satisfactory results (Seidel and
Lagoudas, 2006).

The cylindrical structure of the nanocomposites’ RVE poses cer-
tain challenges in terms of homogenization. To properly study such
reinforced interphase via periodic homogenization, one has to con-
sider that this composite presents cylindrical periodicity, in which
the structure cannot be obtained by repetition of the same unit
cell, as in Cartesian periodic composites. In addition, the volume
fraction of the CNTs inside the matrix is reduced with the increase
of the radial direction.

The most accurate technique for such microstructure is the
asymptotic expansion homogenization, interpreted in cylindrical
coordinates by Chatzigeorgiou et al. (2011) and for more complex
microstructures the generalized periodicity homogenization
(Tsalis et al., 2012; Guinovart-Sanjuán et al., 2016). The importance
of cylindrical meso- and micro-coordinates is outlined in the above
papers, since they allow to consider a 2-D cell problem and repre-
1 It should not be confused with the traditional bulk modulus of isotropic materials.
sent in a consistent way the homogenization process for shell
structures by exploiting the locally periodic homogenization tech-
niques. The periodic microstructure depends on the radial distance,
therefore the approximate locally periodic homogenization tech-
nique described in Tsalis et al. (2012) leads to a continuously
graded effective material. This homogenization technique is
applied to several unit cells, whose effective properties are com-
puted numerically.

Another important aspect in the behavior of a nanocomposite is
the possible agglomeration of carbon nanotubes. This phenomenon
has been studied extensively in the literature of nanocomposites
(Ma et al., 2008; Al-Saleh and Sundararaj, 2011). High volume frac-
tion of CNTs that are not well dispersed can even cause decrease in
the composite’s overall behavior (Bal and Samal, 2007). With
regard to fuzzy fiber composites, high CNT content (over 40%) at
the interphase between the fibers and the matrix has been
reported in some studies (Chatzigeorgiou et al., 2012; Ren et al.,
2015; Zhou et al., 2016). To the best of the authors knowledge,
the effects of CNTs agglomeration on the interphase regions of
fuzzy fiber composites have not been investigated. In this manu-
script, such aspects are not considered. However, one can account
for agglomeration of CNTs through various micromechanics tec-
niques (Seidel and Lagoudas, 2006; Feng et al., 2007).

The results of the computational homogenization indicate that
the effective nanocomposite is cylindrically orthotropic with its
coefficients spatially dependent on the mesoscale radial distance.
In a rough but rather successful approximation, it is assumed that
the nanocomposite behaves as a typical unidirectional fiber com-
posite (see Seidel et al., 2014). This last assumption is also adopted
in the present work. When the CNTs are wavy, the unidirectional
microfiber composite properties can be identified through compu-
tational (Kundalwal and Ray, 2014; Tsalis et al., 2017) or analytical
(Yanase et al., 2013; Zhu et al., 2020) strategies.

In general, the microfibers are distributed on the fiber surface in
a random way. For computational purposes, one can consider
either tetragonal or hexagonal array packing of microfibers. The
homogenized nanocomposite (phase 2) presents cylindrical ortho-
tropy and its elasticity tensor is expressed as

Lcyl2 ¼

Lrr2 Lrh2 Lrz2 0 0 0

Lrh2 Lhh2 Lhz2 0 0 0

Lrz2 Lhz2 Lzz2 0 0 0
0 0 0 lrh

2 0 0
0 0 0 0 lrz

2 0
0 0 0 0 0 lhz

2

2
6666666664

3
7777777775
:

The 9 material coefficients of this medium are Lrr2 ; L
hh
2 ; Lzz2 , L

rh
2 ; L

rz
2 ; L

hz
2 ,

lrh
2 ;lrz

2 and lhz
2 .



Fig. 5. Mesoscale of the fuzzy fiber composite: (a) Hexagonal arrangement of fuzzy fibers. (b) Equivalent RVE where the CNTs and the surrounding matrix are substituted by a
an interphase layer, the nanocomposite (NCP).

Fig. 6. (a) Coated cylindrical fiber, embedded in a matrix material. The fiber, the coating and the matrix have homothetic topology. The fiber and the matrix have constant
elasticity moduli and uniform inelastic stresses, while the coating has spatially varying elastic modulus and uniform inelastic stress. Moreover, the system is subjected to
linear macroscopic displacement. (b) Equivalent medium with equivalent uniform inelastic stress under the same boundary conditions.

G. Chatzigeorgiou et al. / International Journal of Solids and Structures 202 (2020) 39–57 43
2.4. Mesoscale: fuzzy fiber embedded in matrix

The random arrangement of the unidirectional fuzzy fibers in
the matrix (Fig. 3) can be approximated in the mesoscale RVE by
a distribution in a hexagonal array, as in Fig. 5a (see the discussion
in Hashin and Rosen, 1964). After the first homogenization step at
the microscale, the CNTs and their surrounding matrix are substi-
tuted by the equivalent nanocomposite (Fig. 5b). The latter mesos-
cale RVE can be treated numerically through the periodic
homogenization, but the computational cost is quite important
due to the spatially dependent behavior, in Cartesian coordinates,
of the nanocomposite. When dealing with the composite cylinders
assemblage (CCA) approach, an equivalent RVE of concentric cylin-
ders is introduced, as in Fig. 6a.

In Tsukrov et al. (2012), Chatzigeorgiou et al. (2012), the CCA
method has been used for evaluating the effective coefficients. By
considering the mechanical response of the model to elementary
load cases (axial tension, transverse hydrostatic tension, axial and
transverse shear, thermal expansion) the effective thermomechani-
cal behavior has been determined. Additionally, to evaluate the
effective transverse shear modulus, the generalized self consistent
method has been applied, in which a composite cylinder is sur-
rounded by a transversely isotropic infinite matrix, whose shear
modulus is equal to the unknown modulus, subjected to remote
shear strain.
In this contribution, the main novelty compared to the previous
works on the fuzzy fiber composites modeling of Chatzigeorgiou
et al. (2011), Chatzigeorgiou et al. (2012), Chatzigeorgiou et al.
(2012), Kundalwal and Ray (2011), Kundalwal and Ray (2012),
Kundalwal and Ray (2014) is the integration of the TFA framework
into the homogenization scheme. The proposed methodology
accounts for nonlinear mechanisms through the presence of inelas-
tic stress fields. To the best of the authors knowledge, the transfor-
mation field analysis has not been used in the literature before for
the study of fuzzy fiber composites. The current approach permits
to incorporate nonlinear mechanisms into the material con-
stituents and to obtain appropriate concentration tensors, which
provide the link between mesoscopic and macroscopic fields.

Consider a coated cylindrical inhomogeneity, embedded in a
matrix material. The inhomogeneity is characterized by constant
elasticity modulus L1, occupies the space X1 with volume V1,
bounded by the surface @X1 and subjected to the uniform inelastic
stress rp

1. The coating layer is characterized by spatially varying

elasticity modulus Lð2ÞðxÞ, occupies the space X2 with volume V2,
bounded by the surfaces @X1 and @X2 and subjected to the uniform
inelastic stress rp

2. It should be noted that, since the coating is

cylindrically orthotropic, Lð2Þ is spatially dependent in Cartesian
coordinates. The matrix is characterized by constant elasticity
modulus L0, occupies the space X0 with volume V0, bounded by
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the surface @X0 and subjected to the uniform inelastic stress rp
0. At

the boundary of the coating, a linear displacement field uext ¼ �e � x
is applied (Fig. 6a), where �e denotes the macroscopic strain tensor.
As shown in Figs. 6a and 6b, the space X ¼ X1 [X2 [X0 denotes the
total RVE, whose volume is V ¼ V1 þ V2 þ V0.

For this RVE, the equilibrium equation reads

divr ¼ 0; in X; ð1Þ
with

rðxÞ ¼
L1 : eðxÞ þ rp

1; x 2 X1;

Lð2ÞðxÞ : eðxÞ þ rp
2; x 2 X2;

L0 : eðxÞ þ rp
0; x 2 X0:

8><
>: ð2Þ

In the proposed analytical micromechanics scheme, an equivalent
medium with unknown elasticity tensor �L is considered to occupy
the total space X, and is subjected: i) to the same displacement field
at the boundary, and ii) to the uniform unknown inelastic stress �rp

(Fig. 6b). The main goal is to identify the macroscopic constitutive
law for this medium,

�r ¼ �L : �eþ �rp: ð3Þ
The macroscopic stress and strain fields obey the standard relations
with their microscopic counterparts

�e ¼
X2
i¼0

ciei; �r ¼
X2
i¼0

ciri; ð4Þ

where the ei and ri denote average quantities per phase,

ei ¼ 1
Vi

Z
Xi

eðxÞ dx; ri ¼ 1
Vi

Z
Xi

rðxÞ dx; ð5Þ

for i = 0,1,2 with ci denoting the volume fractions of the material
constituents. The applied macroscopic strain, �e, and the inelastic
stresses, rp

1;r
p
2;r

p
0, are known. The tasks of the analytical homoge-

nization strategy are:

� To identify strain-type elastic, Ai, and inelastic, Ap
j;i, concentra-

tion tensors that satisfy the relations
2 Tho
in Lago
ei ¼ Ai : �eþ
X2
j¼0

Ap
j;i : r

p
j ; i ¼ 0;1;2: ð6Þ
� To identify stress-type elastic, Di, and inelastic, Dp
j;i, concentra-

tion tensors that satisfy the relations
ri ¼ Di : �eþ
X2
j¼0

Dp
j;i : r

p
j ; i ¼ 0;1;2: ð7Þ
Combining (3), (4)2 and (7) yields

�L ¼
X2
i¼0

ciDi; �rp ¼
X2
j¼0

Bp
j : r

p
j ; Bp

j ¼
X2
i¼0

ciD
p
j;i: ð8Þ

Bp
j denote the inelastic stress concentration tensors. In the develop-

ment of the expressions (2)–(8) the crucial hypothesis is the unifor-
mity of the inelastic fields inside the phases. Generally, the inelastic
stresses in the matrix and in the nanocomposite are expected to be
strongly nonuniform. However, considering uniform inelastic stres-
ses, rp

i , in all material phases is an unavoidable assumption for the
development of analytical micromechanics strategies. The inelastic
stresses are considered to represent the average inelastic stresses in
a phase2. The constitutive law (2) combined with the expressions (6)
rough discussion about the implications arising from this assumption is given
udas et al. (1991).
‘‘mimic” the classical TFA approach adopted in mean-field homoge-
nization frameworks, like Mori–Tanaka. From a computational point
of view, this hypothesis permits to easily account for nonlinear
mechanisms like plasticity, viscoplasticity etc. Indeed, an iterative
multiscale computational scheme for nonlinear materials uses the
macroscopic strain field and expressions of the form (6) to identify
the average strains per phase. The latter are utilized for predicting
the inelastic stresses per phase.

The nonuniform spatial distribution of the inelastic fields inside
the matrix phase is a known issue in the micromechanics commu-
nity and usually leads to stiff macroscopic responses if classical
approaches are followed. Certain methodologies have been pro-
posed in the literature to overcome these stiff predictions (see
for instance Chaboche et al., 2005; Lahellec and Suquet, 2007;
Brassart et al., 2012; Barral et al., 2020; Wu et al., 2017).

Inside the nanocomposite, the non-uniformity of inelastic fields
is expected to be strong due to its cylindrically orthotropic nature.
In the present manuscript, the studied numerical examples exam-
ine the accuracy of the framework under known inelastic fields. In
a forthcoming publication, the developed framework is going to be
applied for composites with nonlinear fiber and coating phases, in
which the inelastic fields are computed through appropriate incre-
mental iterative schemes.

As a side note, thermal stresses are a special case of known
inelastic fields which are incompatible with (2). To address this
incompatibility, a special boundary value problem is studied in
Section 3.

3. Mesoscale RVE: effective properties and concentration
tensors

3.1. Expressing the mesoscale problem in cylindrical coordinates

Inside the RVE of Fig. 6a, the various mechanical fields gener-
ated at every phase q (q ¼ 1;2) depend on the spatial position, i.e.3

uðqÞðxÞ; eðqÞðxÞ; rðqÞðxÞ; rpðqÞðxÞ; 8x 2 Xq:

Due to the geometry of the inhomogeneities, the problem can
be transformed in cylindrical coordinates, using a system of con-
centric cylinders for the fiber and the nanocomposite. In the cylin-
drical coordinate system, the strain tensor components at each
phase are given by the expressions

eðqÞrr ¼ @uðqÞr
@r ; eðqÞhh ¼ 1

r
@uðqÞ

h
@h þ uðqÞr

r ; eðqÞzz ¼ @uðqÞz
@z ;

2eðqÞrh ¼ @uðqÞ
h

@r þ 1
r

@uðqÞr
@h � uðqÞ

h
r ; 2eðqÞrz ¼ @uðqÞz

@r þ @uðqÞr
@z ;

2eðqÞhz ¼ 1
r

@uðqÞz
@h þ @uðqÞ

h
@z ;

ð9Þ

while the equilibrium equations per phase are written as

@rðqÞ
rr

@r þ 1
r

@rðqÞ
rh

@h þ rðqÞ
rr �rðqÞ

hh
r þ @rðqÞ

rz
@z ¼ 0;

@rðqÞ
rh

@r þ 1
r

@rðqÞ
hh

@h þ 2rðqÞ
rh
r þ @rðqÞ

hz
@z ¼ 0;

@rðqÞ
rz

@r þ 1
r

@rðqÞ
hz

@h þ rðqÞ
rz
r þ @rðqÞ

zz
@z ¼ 0:

ð10Þ

According to the RVE of Fig. 6a, the fiber has radius r ¼ r1, the
coating layer has external radius r2 and the matrix has external
radius r0. In the sequel, the ratios

/c ¼
r21
r22

¼ V1

V1 þ V2
; /m ¼ r22

r20
¼ V1 þ V2

V
; ð11Þ
3 In the sequel, the exponent (q) above a symbol will denote that the aforemen-
tioned quantity may vary spatially.
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are introduced. Using these ratios, the volume fractions of the mate-
rial constituents, ci, are given by the expressions

c1 ¼ /c/m; c2 ¼ /m½1� /c�; c0 ¼ 1� /m: ð12Þ
For the heterogeneous mesoscale RVE, the traction and dis-

placement continuity between fiber-coating and between
coating-matrix are expressed through the relations

uð1Þ
k ðr1; h; zÞ ¼ uð2Þ

k ðr1; h; zÞ;uð2Þ
k ðr2; h; zÞ ¼ uð0Þ

k ðr2; h; zÞ; k ¼ r; h; z;

rð1Þ
rk ðr1; h; zÞ ¼ rð2Þ

rk ðr1; h; zÞ;rð2Þ
rk ðr2; h; zÞ ¼ rð0Þ

rk ðr2; h; zÞ; k ¼ r; h; z:

ð13Þ
Concerning the analytical homogenization strategy, average

fields per phase are required to be computed. Considering the
phase q, which has inner radius ra, outer radius rb and length 2L,
its average strain and stress, in Voigt notation, are given by the
expressions

eq ¼ 1
2Lp½r2

b
�r2a �

R L
�L

R 2p
0

R rb
ra

�Q T � ecylðqÞr dr dh dz;

rq ¼ 1
2Lp½r2

b
�r2a �

R L
�L

R 2p
0

R rb
ra

~Q T � rcylðqÞr dr dh dz:
ð14Þ

The rotation matrices �Q and ~Q are given in Appendix A.
A major hypothesis in the proposed method is that the equiva-

lent medium is transversely isotropic with elasticity tensor
expressed in the form

�L ¼

�Ktr þ �ltr �Ktr � �ltr �l 0 0 0

�Ktr � �ltr �Ktr þ �ltr �l 0 0 0
�l �l �n 0 0 0

0 0 0 �ltr 0 0

0 0 0 0 �lax 0

0 0 0 0 0 �lax

2
6666666666664

3
7777777777775
:

The unknown material properties are the transverse bulk mod-
ulus, �Ktr, the transverse shear modulus, �ltr, the axial shear modu-
lus, �lax, and the coefficients �l and �n. The transverse isotropy of the
overall medium has been verified in the past through the more
accurate periodic homogenization framework (Chatzigeorgiou
et al., 2011; Seidel et al., 2014). In the numerical example of the
current article, the same conclusion is obtained.

Following the classical development of the Composite Cylinders
Assemblage approach, several boundary value problems are solved
analytically. The adopted strategy has the following steps:

1. Apply special macroscopic boundary conditions and inelastic
stresses per phase. The analytical solutions for these conditions
are known up to several constants.
2. Obtain the values of constants by using the boundary and the
interface conditions between layers.
3. Compute the various concentration tensors Ai;A

p
j;i;Di and Dp

j;i

for i; j=0,1,2.
4. Compute the macroscopic elasticity tensor, �L, and the inelas-
tic stress concentration tensors, Bp

j , using the expressions (8).

A small change in the above strategy is required for obtaining
the macroscopic transverse shear modulus. In the relevant subsec-
tion, the details of this deviation are provided.

3.2. Axial shear 13

The applied displacement boundary conditions in the RVE are

uext
z ðr0; h; zÞ ¼ 2br0 cos h: ð15Þ
This field corresponds to the macroscopic shear angle 2�e13 ¼ 2b
(Fig. 7). The three phases are subjected to inelastic stresses whose
non zero components per phase are

rpðiÞ
rz ¼ si cos h; rpðiÞ

hz ¼ �si sin h; i ¼ 0;1;2: ð16Þ
The latter corresponds to uniform shear stress on the plane

x1 � x3. The constants b; s1; s2 and s0 are known. The displacement
fields at every r; h and z that satisfy the equilibrium equations (10)
take the analytical forms

uð1Þ
r ¼ uð1Þ

h ¼ 0; uð1Þ
z ¼ rN1;1 cos h;

uð2Þ
r ¼ uð2Þ

h ¼ 0; uð2Þ
z ¼ r

X2
i¼1

N2;i
r
r1

h ini�1
cos h;

uð0Þ
r ¼ uð0Þ

h ¼ 0; uð0Þ
z ¼ r N0;1 þ N0;2

r
r2

h i�2
� �

cos h;

ð17Þ

with

n1 ¼
ffiffiffiffiffiffiffi
lhz

2

lrz
2

s
; n2 ¼ �

ffiffiffiffiffiffiffi
lhz

2

lrz
2

s
: ð18Þ

For the expression of uð1Þ
z , it has been taken into account that the

displacement at r ¼ 0 is finite. The values of the constants Ni;j and
the concentration tensors terms Aixz ;A

p
j;ixz

, Dixz and Dp
j;ixz

for i; j=0,1,2,
are determined with the procedure discussed in Section B.1 of
Appendix B.

Axial shear 23 conditions follow the same procedure: The
applied displacement boundary conditions in the RVE are

uext
z ðr0; h; zÞ ¼ 2br0 sin h; ð19Þ

which correspond to the macroscopic shear angle 2�e23 ¼ 2b. The
three phases are subjected to inelastic stresses whose non zero
components per phase are

rpðiÞ
rz ¼ si sin h; rpðiÞ

hz ¼ si cos h; i ¼ 0;1;2: ð20Þ
The latter corresponds to uniform shear stress on the plane

x2 � x3. The constants b; s1; s2 and s0 are known. The displacement
fields at every r; h and z that satisfy the equilibrium equations (10)
take similar analytical forms with the ones of the axial shear 13
case, simply by exchanging cos hwith sin h. Moreover, the obtained
concentration tensor terms are exactly the same with those
obtained in the axial shear 13 boundary value problem.
Fig. 7. Axial shear conditions.



Fig. 9. Axial conditions.
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3.3. Transverse normal conditions

The applied displacement boundary conditions in the RVE are

uext
r ðr0; h; zÞ ¼ br0: ð21Þ
This field corresponds to the biaxial macroscopic normal strain

condition �e11 ¼ �e22 ¼ b (Fig. 8). The three phases are subjected to
inelastic stresses whose non zero components per phase are

rpðiÞ
rr ¼ rpðiÞ

hh ¼ si; i ¼ 0;1;2: ð22Þ
The latter corresponds to equibiaxial stress on the plane x1 � x2.

The constants b; s1; s2 and s0 are known. The displacement fields at
every r; h and z that satisfy the equilibrium equations (10) take the
analytical forms

uð1Þ
r ¼ rN1;1; uð1Þ

h ¼ uð1Þ
z ¼ 0;

uð2Þ
r ¼ r

X2
i¼1

N2;i
r
r1

h ini�1
; uð2Þ

h ¼ uð2Þ
z ¼ 0;

uð0Þ
r ¼ r N0;1 þ N0;2

r
r2

h i�2
� �

; uð0Þ
h ¼ uð0Þ

z ¼ 0;

ð23Þ

with

n1 ¼
ffiffiffiffiffiffi
Lhh2
Lrr2

s
; n2 ¼ �

ffiffiffiffiffiffi
Lhh2
Lrr2

s
: ð24Þ

For the expression of uð1Þ
r , it has been taken into account that the

displacement at r ¼ 0 is finite. The values of the constants Ni;j and
the concentration tensors terms Aixx ;A

p
j;ixx

;Dixx ;D
p
j;ixx

;Dix=x and Dp
j;ix=x

for

i; j=0,1,2, are determined with the procedure discussed in Sec-
tion B.2 of Appendix B.

3.4. Axial conditions

The applied displacement boundary conditions in the RVE are

uext
z ðr; h;�LÞ ¼ �bL; uext

r ðr0; h; zÞ ¼ 0: ð25Þ
This field corresponds to the axial macroscopic normal strain

�e33 ¼ b (Fig. 9). The three phases are subjected to inelastic stresses
whose non zero components per phase are

rpðiÞ
zz ¼ si; i ¼ 0;1;2: ð26Þ
Fig. 8. Transverse normal conditions.
The latter corresponds to axial stress in the x3 direction. The
constants b; s1 and s2 are known. The displacement fields at every
r; h and z that satisfy the equilibrium equations (10) take the ana-
lytical forms

uð1Þ
r ¼ rN1;1; uð1Þ

h ¼ 0; uð1Þ
z ¼ bz;

uð2Þ
r ¼ c2br þ r

X2
i¼1

N2;i
r
r1

h ini�1
; uð2Þ

h ¼ 0; uð2Þ
z ¼ bz;

uð0Þ
r ¼ r N0;1 þ N0;2

r
r2

h i�2
� �

; uð0Þ
h ¼ 0; uð0Þ

z ¼ bz;

ð27Þ

with

c2 ¼ Lhz2 � Lrz2
Lrr2 � Lhh2

; n1 ¼
ffiffiffiffiffiffi
Lhh2
Lrr2

s
; n2 ¼ �

ffiffiffiffiffiffi
Lhh2
Lrr2

s
: ð28Þ

For the expression of uð1Þ
r , it has been taken into account that the

displacement at r ¼ 0 is finite. The values of the constants Ni;j and
the concentration tensors terms Aix�z ;Dix�z and Diz for i; j=0,1,2, are
determined with the procedure discussed in Section B.3 of Appen-
dix B.

3.5. Transverse shear conditions

Following Christensen and Lo (1979), the Generalized Self Con-
sistent Composite Cylinders Assemblage strategy is considered for
this case. The traction boundary conditions are:

rext
rr ðrext; h; zÞ ¼ b sin 2h; rext

rh ðrext; h; zÞ ¼ b cos 2h; rext ! 1:

ð29Þ
These conditions correspond to macroscopic transverse shear

stress �r12. A fourth layer is added to the RVE, which is character-
ized by the unknown material properties �L (Fig. 10). The four
phases are subjected to inelastic stresses whose non zero compo-
nents per phase are



Fig. 10. Four cylinders RVE model used in the generalized self consistent approach
and transverse shear conditions.
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rpðiÞ
rr ¼ si sin 2h;rpðiÞ

hh ¼ �si sin 2h;rpðiÞ
rh ¼ si cos 2h; i ¼ 0;1;2;

rpð3Þ
rr ¼ �s sin 2h;rpð3Þ

hh ¼ ��s sin 2h;rpð3Þ
rh ¼ �s cos 2h:

ð30Þ
The latter correspond to transverse inelastic shear stresses on

the plane x1 � x2. �s is the unknown macroscopic inelastic stress.
The traction and displacement continuity between the matrix
and the equivalent medium are expressed through the relations

uð0Þ
k ðr0; h; zÞ ¼ uð3Þ

k ðr0; h; zÞ; rð0Þ
rk ðr0; h; zÞ ¼ rð3Þ

rk ðr0; h; zÞ; k ¼ r; h; z:

ð31Þ
The constants b; s1; s2 and s0 are known. The nonzero displace-

ment fields at every r; h and z that satisfy the equilibrium equations
(10) and the boundary conditions take the analytical forms

uð1Þ
r ¼ r Z1N1;1

r
r1

h i2
þ N1;2

� �
sin 2h;

uð1Þ
h ¼ r N1;1

r
r1

h i2
þ N1;2

� �
cos 2h;

ð32Þ

uð2Þ
r ¼ r

X4
i¼1

XiN2;i
r
r1

h ini�1
" #

sin 2h;

uð2Þ
h ¼ r

X4
i¼1

N2;i
r
r1

h ini�1
" #

cos 2h;

ð33Þ

uð0Þ
r ¼ r Z0N0;1

r
r2

h i2
þ N0;2 � N0;3

r
r2

h i�4
þ Z00N0;4

r
r2

h i�2
� �

sin 2h;

uð0Þ
h ¼ r N0;1

r
r2

h i2
þ N0;2 þ N0;3

r
r2

h i�4
þ N0;4

r
r2

h i�2
� �

cos 2h;

ð34Þ

uð3Þ
r ¼ r

2�ltr b� �N3
r
r0

h i�4
þ �Z0�N4

r
r0

h i�2
� �

sin 2h;

uð3Þ
h ¼ r

2�ltr bþ �N3
r
r0

h i�4
þ �N4

r
r0

h i�2
� �

cos 2h:
ð35Þ

In the above expressions,

Z1 ¼ Ktr
1 �ltr

1
2Ktr

1 þltr
1
; Z0 ¼ Ktr

0 �ltr
0

2Ktr
0 þltr

0
;

Z0
0 ¼ Ktr

0 þltr
0

ltr
0

; �Z0 ¼ �Ktrþ�ltr

�ltr ;
ð36Þ

and

Xi ¼ 2
Lhh2 � niL

rh
2 þ ½1� ni�lrh

2

Lhh2 þ 4lrh
2 � Lrr2 n

2
i

; i ¼ 1;2;3;4: ð37Þ
Moreover, ni are the four solutions of the following polynomial
equation:

9Lhh2 l
rh
2 þ Lrr2 l

rh
2 n

4
i þ 4Lrh2 ½Lrh2 þ 2lrh

2 � � Lhh2 l
rh
2 � Lrr2 ½4Lhh2 þ lrh

2 �
h i

n2i ¼ 0:

ð38Þ
The values of the constants Ni;j and the concentration tensors

terms Aixy ;A
p
j;ixy

;Dixy and Dp
j;ixy

for i; j=0,1,2, are determined with the

procedure discussed in Section B.4 of Appendix B.

3.6. Deviatoric conditions

This case is similar with the previous one. The applied traction
boundary conditions are:

rext
rr ðrext; h; zÞ ¼ b cos 2h;

rext
hh ðrext; h; zÞ ¼ �b cos 2h;

rext
rh ðrext; h; zÞ ¼ �b sin 2h; rext ! 1:

ð39Þ

Once again, a fourth layer is added to the RVE, which is charac-
terized by the unknown material properties �L. The four phases are
subjected to inelastic stresses whose non zero components per
phase are

rpðiÞ
rr ¼ si cos h;rpðiÞ

hh ¼ �si cos 2h;rpðiÞ
rh ¼ �si sin 2h; i ¼ 0;1;2;

rpð3Þ
rr ¼ �s cos 2h;rpð3Þ

hh ¼ ��s cos 2h;rpð3Þ
rh ¼ ��s sin 2h;

ð40Þ
where �s is the unknown macroscopic inelastic stress. The deviatoric
conditions lead to similar solution with the transverse shear condi-
tions. The displacement fields in all phases are expressed in the gen-
eral form4

ur ¼ r
X4
i¼1

XiNi
r
r1

h ini�1
" #

cos 2h;

uh ¼ �r
X4
i¼1

Ni
r
r1

h ini�1
" #

sin 2h:

ð41Þ

Some computational details for this boundary value problem
are given in Section B.5 of Appendix B.

3.7. Concentration tensors

The obtained concentration tensor terms from the previously
discussed boundary value problems are sufficient to establish the
complete form of the tensors. Indeed, in Voigt notation they are
written as

Ai ¼

AixxþAixy

2

Aixx�Aixy

2 Aix�z 0 0 0

Aixx�Aixy

2

AixxþAixy

2 Aix�z 0 0 0

0 0 1 0 0 0

0 0 0 Aixy 0 0

0 0 0 0 Aixz 0

0 0 0 0 0 Aixz

2
6666666666666666666664

3
7777777777777777777775

; ð42Þ
4 Some terms vanish in certain phases, see the previous boundary value problem.
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Ap
j;i ¼

Ap
j;ixx

þAp
j;ixy

=2

2

Ap
j;ixx

�Ap
j;ixy

=2

2 0 0 0 0

Ap
j;ixx

�Ap
j;ixy

=2

2

Ap
j;ixx

þAp
j;ixy

=2

2 0 0 0 0

0 0 0 0 0 0

0 0 0 Ap
j;ixy

0 0

0 0 0 0 Ap
j;ixz

0

0 0 0 0 0 Ap
j;ixz

2
666666666666666666666664

3
777777777777777777777775

; ð43Þ
Di ¼

Dixxþ2Dixy

2

Dixx�2Dixy

2 Dix�z 0 0 0

Dixx�2Dixy

2

Dixxþ2Dixy

2 Dix�z 0 0 0

Dix=x

2

Dix=x

2 Diz 0 0 0

0 0 0 Dixy 0 0

0 0 0 0 Dixz 0

0 0 0 0 0 Dixz

2
66666666666666666666664

3
77777777777777777777775

; ð44Þ

and

Dp
j;i ¼

Dp
j;ixx

þDp
j;ixy

2

Dp
j;ixx

�Dp
j;ixy

2 0 0 0 0

Dp
j;ixx

�Dp
j;ixy

2

Dp
j;ixx

þDp
j;ixy

2 0 0 0 0

Dp
j;ix=x

2

Dp
j;ix=x

2 dji 0 0 0

0 0 0 Dp
j;ixy

0 0

0 0 0 0 Dp
j;ixz

0

0 0 0 0 0 Dp
j;ixz

2
6666666666666666666666664

3
7777777777777777777777775

; ð45Þ

for i; j=0,1,2. All the constants of the above tensors are obtained
through the procedure described in the Appendix B. dji stands for
the Kronecker delta symbol, given in Eq. (B.1).
Table 1
Material properties of fuzzy fiber composite constituents. The mechanical properties
of graphene have been obtained from Chatzigeorgiou et al. (2012), while the thermal
from Shaina et al. (2016).

Property Epoxy Glass Graphene

Young’s Modulus [MPa] 3000 72000 1100000
Poisson’s ratio 0.3 0.2 0.14
Thermal expansion coefficient [1/K] 1.1E�4 5.0E�6 �3.75E�6
3.8. Thermal conditions

When a fuzzy fiber composite is subjected to thermal condi-
tions, the nanocomposite experiences thermal stresses which are
constant in the cylindrical coordinate system. The thermal stress
tensor is known, since it depends on material properties (elasticity
and thermal conductivity tensors), and it takes the form

rthcyl
2 ¼ sr2 sh2 sz2 0 0 0

� �T
;

where, in general, sr2 – sh2 – sz2. Transforming rthcyl
2 to Cartesian coor-

dinates produces a spatially dependent rth
2 , which is incompatible

with the main hypothesis (2) for the constitutive law. To address
this incompatibility for the thermal conditions, the following
boundary value problem is studied separately from the previously
examined cases: The three phases of Fig. 6a are subjected to inelas-
tic stresses whose non zero components per phase are

rthð1Þ
rr ¼ rthð1Þ

hh ¼ str1 ; rthð1Þ
zz ¼ sax1 ;

rthð2Þ
rr ¼ sr2; rthð2Þ

hh ¼ sh2; rthð2Þ
zz ¼ sz2;

rthð0Þ
rr ¼ rthð0Þ

hh ¼ str0 ; rthð0Þ
zz ¼ sax0 :

ð46Þ

The displacement fields at every r; h and z that satisfy the equi-
librium equations take the analytical forms

uð1Þ
r ¼ rN1;1; uð1Þ

h ¼ uð1Þ
z ¼ 0;

uð2Þ
r ¼ rX½sr2 � sh2� þ r

X2
i¼1

N2;i
r
r1

h ini�1
; uð2Þ

h ¼ uð2Þ
z ¼ 0;

uð0Þ
r ¼ r N0;1 þ N0;2

r
r2

h i�2
� �

; uð0Þ
h ¼ uð0Þ

z ¼ 0;

ð47Þ

with

n1 ¼
ffiffiffiffiffiffi
Lhh2
Lrr2

s
; n2 ¼ �

ffiffiffiffiffiffi
Lhh2
Lrr2

s
; X ¼ 1

Lhh2 � Lrr2
: ð48Þ

For the expression of uð1Þ
r , it has been taken into account that the

displacement at r ¼ 0 is finite. The computational details for
obtaining the macroscopic thermal stress tensor, �rth, are provided
in Section B.6 of Appendix B.

4. Numerical example

This section presents a numerical example of a fuzzy fiber com-
posite with wavy carbon nanotubes. The scope is to investigate the
accuracy of the proposed methodology. In a forthcoming article, a
proper parametric investigation and applications in nonlinear
composites will demonstrate the method’s efficiency.

4.1. Material properties and geometrical characteristics

Concerning the material phases, the matrix is assumed to be a
typical epoxy; the main fibers are made of glass and the carbon
nanotubes walls are made of graphene. All these materials are iso-
tropic and their properties are summarized in Table 1. While the
graphene is considered isotropic, it should be noted that the effec-
tive behavior of a CNT, single-walled or multi-walled, is anisotro-
pic. Straight CNTs behave as transversely isotropic effective
media and their properties can be obtained through micromechan-
ical techniques (Seidel and Lagoudas, 2006).

With regard to the microscale, the CNTs (hollow microfibers
made of graphene) have internal radius 0.51 nm, external radius
0.85 nm (Chatzigeorgiou et al., 2012). The wavy geometric charac-
teristics of the CNT and its position inside the microscale RVE is
illustrated in Fig. 11. The width per length ratio of the RVE is con-
sidered equal to 1/4, while the waviness of the CNT (height per
length) is taken equal to 0.1. The CNTs are wavy in the r � h space,
they appear in tetragonal arrangement inside the nanocomposite,
and their overall volume fraction in the nanocomposite is 10%.

With regard to the mesoscale, the glass fiber radius is taken
equal to 2.5 lm, the length of the CNTs (i.e. thickness of nanocom-



Table 2
Thermomechanical properties of the nanocomposite obtained via periodic
homogenization.

Property Value Property Value

Lrr2 [MPa] 34420.2 lrh
2 [MPa] 1575.0

Lrh2 [MPa] 2568.0 lrz
2 [MPa] 1416.2

Lrz2 [MPa] 1940.5 lhz
2 [MPa] 1349.4

Lhh2 [MPa] 4779.5 rthr
2 [MPa/K] �0.6784

Lhz2 [MPa] 1967.6 rthh
2 [MPa/K] �0.8161

Lzz2 [MPa] 4712.8 rthz
2 [MPa/K] �0.8193

Fig. 12. Mesoscopic RVE of the fuzzy fiber composite according to the periodic
homogenization strategy. The fuzzy fibers appear with hexagonal arrangement.

Fig. 11. (a) Wavy CNT and (b) RVE at the microscopic scale with tetragonal arrangement of CNTs.

Table 3
Thermomechanical properties of the fuzzy fiber composite. Results obtained via
periodic homogenization (PH) and CCA and relative error of CCA.

Property PH CCA Error

�Ktr [MPa] 4185.5 4184.4 0.03%
�l [MPa] 2025.0 2024.8 0.01%
�n [MPa] 10630.5 10626.2 0.04%
�ltr [MPa] 1616.3 1629.7 0.83%
�lax [MPa] 1442.1 1441.9 0.01%
�rthtr [MPa/K] �0.8161 �0.8161 0.00%

�rthax [MPa/K] �0.8097 �0.8097 0.00%
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posite) is equal to 2 lm, and the fuzzy fiber’s overall volume frac-
tion in the composite is taken equal to 30%.
Fig. 13. Spatial distribution of (a) L11 and (b) L56 com
4.2. Microscale homogenization: effective response of nanocomposite

The microscale RVE is solved with the help of the FE software
ABAQUS. Periodicity conditions are imposed at the boundaries of
the RVE and the mesoscopic strain is provided with the help of
the constraint drivers concept (Praud, 2018; Tikarrouchine et al.,
2018). Six linear perturbation analyses are performed to establish
the complete elasticity tensor of the nanocomposite. For the ther-
mal stresses, zero mesoscopic strain and unit temperature are
applied at the constraint drivers (Tikarrouchine et al., 2019). The
FE computations have been performed using 150088 fully inte-
grated ten-node tetrahedral elements (C3D10). The nanocomposite
properties from this analysis are summarized in Table 2. The effec-
tive thermal expansion coefficients tensor, a2, can be computed by
the classical relation

acyl
2 ¼ � Lcyl2

h i�1
: rthcyl

2 :
ponent in the glass fiber and the nanocomposite.



Fig. 14. Distribution of strains in the mesoscale RVE: (a) 11 normal strain, (b) 12 shear angle and (c) 13 shear angle.

Table 5
Average strains in the fiber, the nanocomposite (NCP) and the matrix. Results are obtained via periodic homogenization (PH) and CCA.

e11 e22 e33 e44 e55 e66

fiber PH 1.92E�6 1.94E�6 1.00E�3 1.13E�4 1.06E�4 1.06E�4
CCA 1.89E�6 1.89E�6 1.00E�3 1.16E�4 1.06E�4 1.06E�4
Error 1.74% 2.44% 0.00% 2.41% 0.01% 0.01%

NCP PH 2.50E�4 2.51E�4 1.00E�3 6.29E�4 1.10E�3 1.10E�3
CCA 2.50E�4 2.50E�4 1.00E�3 6.37E�4 1.10E�3 1.10E�3
Error 0.01% 0.04% 0.00% 1.26% 0.00% 0.01%

matrix PH 1.35E�3 1.35E�3 1.00E�3 1.23E�3 1.09E�3 1.09E�3
CCA 1.35E�3 1.35E�3 1.00E�3 1.22E�3 1.09E�3 1.09E�3
Error 0.02% 0.02% 0.00% 0.24% 0.01% 0.01%

Table 4
Macroscopic inelastic stresses obtained via periodic homogenization (PH) and CCA and relative error of CCA. The stress components units are in MPa.

�r11 �r22 �r33 �r44 �r55 �r66

PH 10.3629 10.3631 14.5687 1.5660 1.3553 1.3554
CCA 10.3605 10.3605 14.5640 1.5785 1.3552 1.3552
Error 0.02% 0.02% 0.03% 0.80% 0.01% 0.01%

5 Slight deviations in second and third digits are due to the numerical accuracy of
the FE computations and inherent trancatures.
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4.3. Mesoscale homogenization: thermomechanical properties of fuzzy
fiber composite

The mesoscale RVE is solved following two different
approaches: (i) via periodic homogenization and (ii) via the CCA
method proposed in the previous section. The periodic homoge-
nization, as a full-field approach, is considered to be more accurate
and thus it is used here as the reference solution.

With respect to the periodic homogenization strategy, the
nanocomposite properties obtained from the previous analysis
are introduced in the RVE of Fig. 12. This RVE consists of matrix
and fuzzy fibers distributed in hexagonal arrangement. As Fig. 13
shows, the cylindrically orthotropic nanocomposite is ‘‘translated”
in the coordinate system of the mesoscale RVE as a functionally
graded monoclinic medium. Its material properties depend on
the angular position. Due to this spatial dependency, the constitu-
tive law of the nanocomposite is introduced in the FE software
ABAQUS with the help of an appropriate user material (UMAT) sub-
routine. The performed analysis is 3-D, since though the composite
is unidirectional, only one element in the x3 direction is sufficient
for accurate results. The FE computations have been performed
using 16552 fully integrated ten-node tetrahedral elements
(C3D10). The obtained results have been validated with performed
analyses using two different meshes, one coarser (7391 C3D10 ele-
ments) and one finer (84787 C3D10 elements) than the chosen
mesh in the present study.

In the same spirit with the microscale analysis, periodicity con-
ditions are imposed at the boundaries of the mesoscale RVE and
the macroscopic strain is provided with the help of the constraint
drivers concept. For the thermal stresses, zero macroscopic strain
and unit temperature are applied at the constraint drivers.

Table 3 summarizes the results obtained from the periodic
homogenization and from the CCA method as described in the pre-
vious section. The relative error for each property is the absolute
value of the difference between the results of the two methods,
divided by the value given by the periodic homogenization. The
first observation is that the periodic homogenization results pro-
vide transversely isotropic response of the composite5. The second
observation is that the CCA method provides very accurate predic-



Table 6
Average stresses in the fiber, the nanocomposite (NCP) and the matrix. Results are obtained via periodic homogenization (PH) and CCA. The stress components units are in MPa.

r11 r22 r33 r44 r55 r66

fiber PH 19.5924 19.5932 79.4771 2.7939 2.5880 2.5881
CCA 19.5888 19.5888 79.4755 2.8756 2.5878 2.5878
Error 0.02% 0.02% 0.00% 2.92% 0.01% 0.01%

NCP PH 9.0002 9.0010 5.2883 1.5229 1.1448 1.1449
CCA 8.9987 8.9987 5.2880 1.5587 1.1447 1.1447
Error 0.02% 0.02% 0.01% 2.35% 0.00% 0.01%

matrix PH 9.5451 9.5451 8.7272 1.4162 1.2546 1.2546
CCA 9.5434 9.5434 8.7262 1.4128 1.2545 1.2545
Error 0.02% 0.02% 0.01% 0.24% 0.01% 0.01%
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tions. Its biggest deviation from the periodic homogenization results
(0.8%) is observed in the transverse shear component, which has
been obtained via the generalized self consistent composite cylin-
ders methodology. This observation was expected, since similar dis-
crepancy between mean field and full field predictions has been
frequently observed in the case of regular unidirectional fiber com-
posites with moderate and high volume fraction of fibers (Hyer
and Waas, 2000). The main reason for this discrepancy is that trans-
verse shear loading leads to strain profiles inside the RVE that cannot
be properly captured using the assumption of a single strain tensor
per phase.

4.4. Mesoscale homogenization: fuzzy fiber composite response under
macroscopic strain and inelastic fields

To test the accuracy of the concentration tensors obtained from
the analytical methodology of the previous section, an additional
comparison between the CCA and the periodic homogenization is
provided below.

In the following example, the glass fiber and the nanocomposite
are subjected to the uniform inelastic stresses

rp
1 ¼ �0:6 � 1 1 1 1 1 1½ �T MPa;

rp
2 ¼ �0:4 � 1 1 1 1 1 1½ �T MPa:

The matrix is assumed to be free from inelastic stresses. In addition,
the macroscopic strain

�e ¼ 0:001 � 1 1 1 1 1 1½ �T ;
is applied in the mesoscale RVE.

The uniform inelastic stresses for both the glass fiber and the
nanocomposite are introduced in the FE periodic homogenization
computations with the help of specially designed user material
(UMAT) subroutines for the ABAQUS software. Moreover, the total
macroscopic strain is applied at the constraint drivers. The distri-
bution of the strains in the RVE from the periodic homogenization
computations is illustrated in Fig. 14.

The obtained macroscopic stresses, as well as the average
strains and stresses per phase are summarized in Tables 4–6,
respectively. Again, it is observed an excellent agreement between
the CCA and the periodic homogenization. The maximum deviation
in the macroscopic and the average fields between the finite ele-
ment simulations and the analytical model computations is
observed in the transverse components. This phenomenon is due
to the same reasons that cause deviation in the transverse shear
modulus predictions, i.e. the difficulty of the mean field techniques
to capture properly the strain profiles in the RVE under transverse
shearing at moderate and high fiber volume fractions.

5. Conclusions

This manuscript has presented a micromechanical framework
for identifying the overall response of a fuzzy fiber composite.
The main novelties of the developed approach are: i) it is applica-
ble for fibers coated with straight or wavy carbon nanotubes, and
ii) it accounts for inelastic mechanical and thermal fields. The pro-
posed method for the mesoscale problem of the composite com-
putes strain-type and stress-type concentration tensors through
the CCA approach. The inelastic fields are taken into account via
the TFA strategy. A numerical example of a fuzzy fiber composite
with wavy nanotubes and comparisons with full field (periodic
homogenization) computations illustrates the excellent accuracy
of the micromechanical founded approach.

The developed strategy has considered one set of properties to
describe the overall behavior of the nanocomposite layer. In the
presence of wavy CNTs, this nanocomposite behaves as a cylindri-
cally orthotropic medium. The proposed methodology can be
easily extended to express the response of the nanocomposite with
more than one layers, as it is the case for the approximate locally
periodic homogenization strategy. This extension could allow to
combine, in the future, the CCA approach with other methods at
the microscopic scale (Tsalis et al., 2012).

The present manuscript focuses on establishing a new
micromechanical framework for fuzzy fiber composites. The
numerical example has been utilized to validate the approach. In
a forthcoming paper, a proper parametric investigation with sev-
eral fuzzy fiber configurations and specific applications in non-
linear composites will demonstrate the capabilities and potential
applications of the proposed method.
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Appendix A. Transformation between coordinate systems

In Voigt notation, strains and stresses are represented as 6� 1
vectors. The displacement, strain and stress fields are transformed
between cylindrical and Cartesian coordinate systems through the
matrix-type formulas

ucyl ¼ RT � u; ecyl ¼ ~�Q � e; rcyl ¼ ��Q � r;
u ¼ R � ucyl; e ¼ ��Q T � ecyl; r ¼ ~�Q T � rcyl;

where R is the rotator second order tensor

R ¼
cos h � sin h 0

sin h cos h 0

0 0 1

2
664

3
775:

and ~Q ; �Q are proper fourth order rotators that transform second
order tensors in Voigt notation (Chatzigeorgiou et al., 2018),
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~Q ¼

cos2 h sin2 h 0 coshsinh 0 0
sin2 h cos2 h 0 �coshsinh 0 0
0 0 1 0 0 0

�2coshsinh 2coshsinh 0 cos2 h�sin2 h 0 0
0 0 0 0 cosh sinh
0 0 0 0 �sinh cosh

2
6666666664

3
7777777775
;

�Q ¼

cos2 h sin2 h 0 2coshsinh 0 0
sin2 h cos2 h 0 �2coshsinh 0 0
0 0 1 0 0 0

�coshsinh coshsinh 0 cos2 h�sin2 h 0 0
0 0 0 0 cosh sinh
0 0 0 0 �sinh cosh

2
6666666664

3
7777777775
:

With the help of the above rotators, the transformation of a stiffness
tensor L takes the form

Lcyl ¼ ��Q � L � ��Q T ; L ¼ ~�Q T � Lcyl � ~�Q :
Appendix B. Computational details for the mesoscale boundary
value problems

This appendix is devoted to the presentation of the computa-
tional details for the boundary value problems discussed in Sec-
tion 3. The symbol dji that appears in the sequel denotes the
Kronecker delta:

dji ¼
1; i ¼ j;
0; i– j;

�
i; j ¼ 0;1;2: ðB:1Þ
B.1. Axial shear xz

For the fields presented in Section 3.2, the average strains and
stresses at every phase are given by the formulas

e1 ¼ N1;1Ixz;

e2 ¼
X2
i¼1

UiN2;iIxz;

e0 ¼ N0;1Ixz;
r1 ¼ s1 þ lax

1 N1;1
� �

Ixz;

r2 ¼ s2 þ lrz
2

X2
j¼1

njUjN2;j

" #
Ixz;

r0 ¼ s0 þ lax
0 N0;1

� �
Ixz;

ðB:2Þ

with

Ixz ¼ 0 0 0 0 1 0½ �T ; ðB:3Þ
and

Ui ¼
ffiffiffiffiffi
/c

p 1�ni � /c

1� /c
: ðB:4Þ

Using the interface and boundary conditions one obtains the linear
system

K � N ¼ 2bFb þ
X2
i¼0

siF i; ðB:5Þ

where
N ¼ N1;1 N2;1 N2;2 N0;1 N0;2½ �T ;
Fb ¼ 0 0 0 0 1½ �T ;
F1 ¼ 0 �1 0 0 0½ �T ;
F2 ¼ 0 1 0 �1 0½ �T ;
F0 ¼ 0 0 0 1 0½ �T ;

ðB:6Þ

and

K ¼

1 �1 �1 0 0
lax

1 �lrz
2 n1 �lrz

2 n2 0 0

0
ffiffiffiffiffi
/c

p 1�n1 ffiffiffiffiffi
/c

p 1�n2 �1 �1

0 lrz
2 n1

ffiffiffiffiffi
/c

p 1�n1 lrz
2 n2

ffiffiffiffiffi
/c

p 1�n2 �lax
0 lax

0

0 0 0 1 /m

2
66666664

3
77777775
: ðB:7Þ

The solution of the above system can be written in the general form

N ¼ 2bNb þ
X2
i¼0

siNsi : ðB:8Þ

From the relations (B.2) and (B.8) one obtains

2ei13 ¼ Aixz2�e13 þ
X2
j¼0

Ap
j;ixz
rp

j13
; ri13 ¼ Dixz2�e13 þ

X2
j¼0

Dp
j;ixz
rp

j13
; ðB:9Þ

with

A1xz ¼ Nb
1;1;A2xz ¼

X2
j¼1

UjN
b
2;j;A0xz ¼ Nb

0;1;

D1xz ¼ lax
1 Nb

1;1;D2xz ¼ lrz
2

X2
j¼1

njUjN
b
2;j;D0xz ¼ lax

0 Nb
0;1;

Ap
i;1xz ¼ Nsi

1;1; Ap
i;2xz ¼

X2
j¼1

UjN
si
2;j; Ap

i;0xz ¼ Nsi
0;1; i ¼ 0;1;2;

Dp
i;1xz

¼ di1 þ lax
1 Nsi

1;1;

Dp
i;2xz

¼ di2 þ lrz
2

X2
j¼1

njUjN
si
2;j;

Dp
i;0xz

¼ di0 þ lax
0 Nsi

0;1; i ¼ 0;1;2:
B.2. Transverse normal conditions

For the fields presented in Section 3.3, the average strains and
stresses at every phase are given by the formulas

e1 ¼ N1;1Ix�y;

e2 ¼
X2
i¼1

UiN2;iIx�y;

e0 ¼ N0;1Ix�y;

r1 ¼ s1 þ 2Ktr
1N1;1

� �
Ix�y þ2l1N1;1Iz;

r2 ¼ ½s2 þ Rx
2�Ix�y þ Rz

2Iz;

r0 ¼ s0 þ 2Ktr
0N0;1

� �
Ix�y þ2l0N0;1Iz;

ðB:10Þ

with

Ix�y ¼ 1 1 0 0 0 0½ �T ; Iz ¼ 0 0 1 0 0 0½ �T ;
ðB:11Þ



1;

G. Chatzigeorgiou et al. / International Journal of Solids and Structures 202 (2020) 39–57 53
Ui ¼
ffiffiffiffiffi
/c

p 1�ni � /c

1� /c
; ðB:12Þ

and

Rx
2 ¼

X2
i¼1

Rx
2;iN2;i; Rx

2;i ¼ ½Lrh2 þ Lrr2 ni�Ui;

Rz
2 ¼

X2
i¼1

Rz
2;iN2;i; Rz

2;i ¼ 2 Lhz2 þLrz2 ni
1þni

Ui:

ðB:13Þ

Using the interface and boundary conditions one obtains the
linear system

K � N ¼ bFb þ
X2
i¼0

siF i; ðB:14Þ

where

N ¼ N1;1 N2;1 N2;2 N0;1 N0;2½ �T ;
Fb ¼ 0 0 0 0 1½ �T ;
F1 ¼ 0 �1 0 0 0½ �T ;
F2 ¼ 0 1 0 �1 0½ �T ;
F0 ¼ 0 0 0 1 0½ �T ;

ðB:15Þ

and

K ¼

1 �1 �1 0 0
2Ktr

1 �½Lrh2 þLrr2 n1� �½Lrh2 þLrr2 n2� 0 0

0
ffiffiffiffiffi
/c

p 1�n1 ffiffiffiffiffi
/c

p 1�n2 �1 �1

0 ½Lrh2 þLrr2 n1�
ffiffiffiffiffi
/c

p 1�n1 ½Lrh2 þLrr2 n2�
ffiffiffiffiffi
/c

p 1�n2 �2Ktr
0 2ltr

0

0 0 0 1 /m

2
66666664

3
77777775
:

ðB:16Þ
The solution of the above system can be written in the general form

N ¼ bNb þ
X2
i¼0

siNsi : ðB:17Þ

From the relations (B.10) and (B.17) one obtains

ei22 ¼ ei11 ¼ 1
2Aixx ½�e11 þ �e22� þ 1

2

X2
j¼0

Ap
j;ixx

½rp
j11

þ rp
j22
�;

ri22 ¼ ri11 ¼ 1
2Dixx ½�e11 þ �e22� þ 1

2

X2
j¼0

Dp
j;ixx

½rp
j11

þ rp
j22
�;

ri33 ¼ 1
2Dix=x ½�e11 þ �e22� þ 1

2

X2
j¼0

Dp
j;ix=x

½rp
j11

þ rp
j22
�;

ðB:18Þ

with

A1xx ¼ Nb
1;1; A2xx ¼

X2
j¼1

UjN
b
2;j; A0xx ¼ Nb

0;1;

D1xx ¼ 2Ktr
1N

b
1;1; D2xx ¼

X2
j¼1

Rx
2;jN

b
2;j; D0xx ¼ 2Ktr

0N
b
0;1;

D1x=x ¼ 2l1N
b
1;1; D2x=x ¼

X2
j¼1

Rz
2;jN

b
2;j; D0x=x ¼ 2l0N

b
0;1;

Ap
i;1xx ¼ Nsi

1;1; Ap
i;2xx ¼

X2
j¼1

UjN
si
2;j;A

p
i;0xx ¼ Nsi

0;1; i ¼ 0;1;2;

Dp
i;1x=x

¼ 2l1N
si
1;1; Dp

i;2x=x
¼

X2
j¼1

Rz
2;jN

si
2;j; Dp

i;0x=x
¼ 2l0N

si
0;1; i ¼ 0;1;2;
Dp
i;1xx

¼ di1 þ 2Ktr
1N

si
1;1;

Dp
i;2xx

¼ di2 þ
X2
j¼1

Rx
2;jN

si
2;j;

Dp
i;0xx

¼ di0 þ 2Ktr
0N

si
0;1; i ¼ 0;1;2:
B.3. Axial conditions

For the fields presented in Section 3.4, the average strains and
stresses at every phase are given by the formulas

e1 ¼ N1;1Ix�y þ bIz;

e2 ¼ bc2 þ
X2
i¼1

UiN2;i

" #
Ix�y þ bIz;

e0 ¼ N0;1Ix�y þ bIz;
r1 ¼ Rx

1Ix�y

þ s1 þ Rz
1

� �
Iz;

r2 ¼ ½Rx
2 þ Sx2b�Ix�y þ s2 þ Rz

2 þ Sz2b
� �

Iz;
r0 ¼ Rx

0Ix�y þ s0 þ Rz
0

� �
Iz;

ðB:19Þ

with

Rx
1 ¼ 2Ktr

1N1;1 þ l1b; Rz
1 ¼ 2l1N1;1 þ n1b;

Sx2 ¼ Lhz2 ½Lrr2 þLrh2 ��Lrz2 ½Lhh2 þLrh2 �
Lrr2 �Lhh2

;

Sz2 ¼ ½Lhz2 �Lrz2 �½Lhz2 þLrz2 �
Lrr2 �Lhh2

þ Lzz2 ;

Rx
0 ¼ 2Ktr

0N0;1 þ l0b; Rz
0 ¼ 2l0N0;1 þ n0b:

ðB:20Þ

In the above expressions, Rx
2;R

z
2 are given by (B.13) and Ui is given

by (B.12). Using the interface and boundary conditions one obtains
the linear system

K � N ¼ bFb; ðB:21Þ
where

N ¼ N1;1 N2;1 N2;2 N0;1 N0;2½ �T ;
Fb ¼ c2 k1 �c2 �k0 0½ �T ;
k1 ¼ Lrh2 þ Lrr2

h i
c2 þ Lrz2 � l1;

k0 ¼ Lrh2 þ Lrr2
h i

c2 þ Lrz2 � l0;

ðB:22Þ

and K is given by (B.16). The solution of the above system can be
written in the general form

N ¼ bNb: ðB:23Þ
From the relations (B.19) and (B.23) one obtains

ei22 ¼ ei11 ¼ Aix�z
�e33; ei33 ¼ �e33;

ri22 ¼ ri11 ¼ Dix�z
�e33;ri33 ¼ Diz�e33 þ

X2
j¼0

djirp
j33
;

ðB:24Þ

with

A1x�z ¼ Nb
1;1; A2x�z ¼ c2 þ

X2
j¼1

UjN
b
2;j; A0x�z ¼ Nb

0;1;

D1x�z ¼ l1 þ 2Ktr
1N

b
1;1; D2x�z ¼ Sx2 þ

X2
j¼1

Rx
2;jN

b
2;j; D0x�z ¼ l0 þ 2Ktr

0N
b
0;

D1z ¼ n1 þ 2l1N
b
1;1; D2z ¼ Sz2 þ

X2
j¼1

Rz
2;jN

b
2;j; D0z ¼ n0 þ 2l0N

b
0;1;

for i ¼ 0;1;2, and Rx
2;j;R

z
2;j are given by (B.13).
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B.4. Transverse shear conditions

For the fields presented in Section 3.5, the average strains and
stresses at every phase are given by the formulas

e1 ¼ ½1þ Z1�N1;1 þ 2N1;2½ �Ixy;

e2 ¼
X4
i¼1

½1þ Xi�UiN2;iIxy;

e0 ¼ 1þ/m
/m

½1þ Z0�N0;1 þ 2N0;2

h i
Ixy;

r1 ¼ s1 þ ltr
1 ½1þ Z1�N1;1 þ 2N1;2½ �� �

Ixy;

r2 ¼ s2 þ
X4
i¼1

WiUi
2½1þni �N2;i

" #
Ixy;

r0 ¼ s0 þ ltr
0

1þ/m
/m

½1þ Z0�N0;1 þ 2N0;2

h ih i
Ixy;

ðB:25Þ

with

Ixy ¼ 0 0 0 1 0 0½ �T ; ðB:26Þ
K ¼

Z1 1 �X1 �X2 �X3 �X4 0 0 0 0
1 1 �1 �1 �1 �1 0 0 0 0
0 2ltr

1 K3;3 K3;4 K3;5 K3;6 0 0 0 0
2ltr

1 ½1þ Z1� 2ltr
1 K4;3 K4;4 K4;5 K4;6 0 0 0 0

0 0 K5;3 K5;4 K5;5 K5;6 �Z0 �1 1 �Z00
0 0 K6;3 K6;4 K6;5 K6;6 �1 �1 �1 �1
0 0 K7;3 K7;4 K7;5 K7;6 0 �2ltr

0 �6ltr
0 4Ktr

0

0 0 K8;3 K8;4 K8;5 K8;6 �2ltr
0 ½1þ Z0� �2ltr

0 6ltr
0 �2Ktr

0

0 0 0 0 0 0 0 2ltr
0 6ltr

0/
2
m �4Ktr

0/m

0 0 0 0 0 0 2ltr
0 ½1þ Z0� 1

/m
2ltr

0 �6ltr
0/

2
m 2Ktr

0/m

2
66666666666666666664

3
77777777777777777775

; ðB:35Þ
Ui ¼
ffiffiffiffiffi
/c

p 1�ni � /c

1� /c
; ðB:27Þ

Wi ¼ ½2� Xi�½Lhh2 � Lrh2 � þ 2lrh
2 ½2Xi þ ni � 1� þ Xini½Lrr2 � Lrh2 �: ðB:28Þ

Let’s consider the equivalent medium under the same boundary
conditions, and subjected to the inelastic stresses

�rp
rr ¼ �s sin 2h; �rp

hh ¼ ��s sin 2h; �rp
rh ¼ �s cos 2h: ðB:29Þ

The displacement field at every position is given by the homoge-
neous solution

�urðr; hÞ ¼ br
2�ltr sin 2h; �uhðr; hÞ ¼ br

2�ltr cos 2h; �uz ¼ 0:

The macroscopic strain and stress are given by the formula

�e ¼ b
�ltr Ixy; �r ¼ bIxy: ðB:30Þ

From the Eshelby’s energy principle, one finds the relation
(Christensen, 1979)R L

�L

R 2p
0 rð3Þ

rr �ur þ rð3Þ
rh �uh þ rð3Þ

rz �uz

h
��rrr�u

ð3Þ
r � �rrhu

ð3Þ
h � �rrzu

ð3Þ
z

i
r¼r0

dhdz ¼ 0:
ðB:31Þ

The latter leads to

2½�Ktr þ �ltr�bþ ½�Ktr þ 2�ltr��s� �
�N4 ¼ 0; ðB:32Þ
which implies that �N4 ¼ 0.
Using the interface conditions at r ¼ r1; r ¼ r2, the traction con-

tinuity conditions at r ¼ r0 and the result of the Eshelby’s energy
principle, one obtains the system

K � N ¼ bFb þ �s�F þ �N3F3 þ
X2
i¼0

s1F i; ðB:33Þ

where

N ¼ N1;1 N1;2 N2;1 N2;2 N2;3 N2;4 N0;1 N0;2 N0;3 N0;4½
Fb ¼ 0 0 0 0 0 0 0 0 1 1½ �T ;
�F ¼ 0 0 0 0 0 0 0 0 1 1½ �T ;
F3 ¼ 0 0 0 0 0 0 0 0 3 �3½ �T ;
F1 ¼ 0 0 �1 �1 0 0 0 0 0 0½ �T ;
F2 ¼ 0 0 1 1 0 0 �1 �1 0 0½ �T ;
F0 ¼ 0 0 0 0 0 0 1 1 �1 �1½ �T ;

ðB:34Þ
and

K3;iþ2 ¼ �Lrh2 ½Xi � 2� � Lrr2 Xini;

K4;iþ2 ¼ �lrh
2 ½2Xi þ ni � 1�;

K5;iþ2 ¼ Xi

ffiffiffiffiffi
/c

p 1�ni
;

K6;iþ2 ¼ ffiffiffiffiffi
/c

p 1�ni
;

K7;iþ2 ¼ Lrh2 ½Xi � 2� þ Lrr2 Xini
h i ffiffiffiffiffi

/c

p 1�ni
;

K8;iþ2 ¼ lrh
2 2Xi þ ni � 1½ � ffiffiffiffiffi

/c

p 1�ni
;

ðB:36Þ

for i ¼ 1;2;3;4. Solving the above system, the N terms are split in
two parts and are given in the compact form

Nf ¼ bNb
f þ �sNs

f þ �N3N
3
f þ

X2
i¼0

siN
si
f ;

N0 ¼ bNb
0 þ �sNs

0 þ �N3N
3
0 þ

X2
i¼0

siN
si
0 ;

ðB:37Þ

where

Nw
f ¼ Nw

1;1 Nw
1;2 Nw

2;1 Nw
2;2 Nw

2;3 Nw
2;4

� �T
;

Nw
0 ¼ Nw

0;1 Nw
0;2 Nw

0;3 Nw
0;4

� �T
;

ðB:38Þ

and w is empty index or any of the indices b; s1; s2; s0; s and 3. The
last two interface conditions (displacement continuity at r ¼ r0)
give the system
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Z0
/m

1 �/2
m Z0

0/m

1
/m

1 /2
m /m

2
64

3
75 �

N0;1

N0;2

N0;3

N0;4

2
6664

3
7775 ¼ b

2�ltr

1
1

� �
þ �N3

1
2�ltr

�1
1

� �
;

ðB:39Þ
or, in compact form,

K � N0 ¼ b
2�ltr Ma þ �N3

1
2�ltr Mb: ðB:40Þ

Splitting the �N3 into an elastic and an inelastic part,

�N3 ¼ �Ne
3 þ �Np

3; ðB:41Þ
the substitution of (B.37) in (B.40) yields

b K � Nb
0 � 1

2�ltr Ma

h i
þ �Ne

3 K � N3
0 � 1

2�ltr Mb

h ih i

þ �sK � Ns
0 þ �Np

3 K � N3
0 � 1

2�ltr Mb

h i
þ
X2
i¼0

siK � Nsi
0

" #
¼ 0:

ðB:42Þ

Since the inelastic fields are treated as uniform inelastic stresses,
the problem remains linear and the principle of superposition holds.
Consequently, it is demanded that each one of the two terms of the
system (B.42) should be equal to zero for arbitrary choice of b; s1; s2
and s0.

B.4.1. Transverse shear modulus
The first term

b K � Nb
0 �

1
2�ltr Ma

� �
þ �Ne

3 K � N3
0 �

1
2�ltr Mb

� �
¼ 0; ðB:43Þ

allows to compute �Ne
3 and �ltr. It is a nonlinear system which leads

to a quadratic expression for the �ltr, which has only one positive
solution. For this solution,

�Ne
3 ¼ �Nbb: ðB:44Þ
B.4.2. Transverse shear inelastic stress
Using the obtained value of �ltr, the second system

K � N3
0 � 1

2�ltr Mb K � Ns
0

h i
�

�Np
3

�s

" #
¼ �

X2
i¼0

siK � Nsi
0 ; ðB:45Þ

is linear and allows to compute �Np
3 and �s as functions of s1; s2 and s0.

The solution is expressed as

�s ¼
X2
i¼0

Bp
ixy
si; �Np

3 ¼
X2
i¼0

�Nsi si: ðB:46Þ
B.4.3. Transverse shear concentration tensors
Returning back to (B.37) yields,

Nf ¼ b Nb
f þ �NbN3

f

h i
þ
X2
i¼0

si Nsi
f þ �NsiN3

f þ Bp
ixy
Ns

f

h i
;

N0 ¼ b Nb
0 þ �NbN3

0

� �þX2
i¼0

si Nsi
0 þ �NsiN3

0 þ Bp
ixy
Ns

0

h i
:

ðB:47Þ

Regrouping the N terms, one obtains the solution in the general
form

N ¼ b
�ltr X

b þ
X2
i¼0

siX
si : ðB:48Þ

Combining (B.25) and (B.48), one obtains
2ei12 ¼ Aixy2�e12 þ
X2
j¼0

Ap
j;ixy
rp

j12
;

ri12 ¼ Dixy2�e12 þ
X2
j¼0

Dp
j;ixy
rp

j12
;

ðB:49Þ

where

A1xy ¼ ½1þ Z1�Xb
1;1 þ 2Xb

1;2; D1xy ¼ ltr
1 A1xy

A2xy ¼
X4
j¼1

½1þ Xj�UjX
b
2;j; D2xy ¼

X4
j¼1

WjUj

2½1þnj �X
b
2;j;

A0xy ¼ 1þ/m
/m

½1þ Z0�Xb
0;1 þ 2Xb

0;2; D0xy ¼ ltr
0 A0xy

Ap
i;1xy ¼ ½1þ Z1�Xsi

1;1 þ 2Xsi
1;2; Dp

i;1xy
¼ di1 þ ltr

1 A
p
i;1xy ;

Ap
i;2xy ¼

X4
j¼1

½1þ Xj�UjX
si
2;j; Dp

i;2xy
¼ di2 þ

X4
j¼1

WjUj

2½1þnj �X
si
2;j;

Ap
i;0xy ¼ 1þ/m

/m
½1þ Z0�Xsi

0;1 þ 2Xsi
0;2;D

p
i;0xy

¼ di0 þ ltr
0 A

p
i;0xy ;

for i ¼ 0;1;2.

B.5. Deviatoric conditions

For the fields presented in Section 3.6, there are many similar-
ities with the transverse shear conditions. The tensor Ixy is actually
substituted by

Ix=y ¼ 1 �1 0 0 0 0½ �T : ðB:50Þ
The obtained systems of equations are exactly the same with the
(B.33) and (B.39). In addition, (B.25) and (B.30) change to

e1 ¼ 1
2 ½1þ Z1�N1;1 þ 2N1;2½ �Ix=y;

e2 ¼ 1
2

X4
i¼1

½1þ Xi�UiN2;iIx=y;

e0 ¼ 1
2

1þ/m
/m

½1þ Z0�N0;1 þ 2N0;2

h i
Ix=y;

r1 ¼ s1 þ ltr
1 ½1þ Z1�N1;1 þ 2N1;2½ �� �

Ix=y;

r2 ¼ s2 þ
X4
i¼1

WiUi
2½1þni �N2;i

" #
Ix=y;

r0 ¼ s0 þ ltr
0

1þ/m
/m

½1þ Z0�N0;1 þ 2N0;2

h ih i
Ix=y;

ðB:51Þ

and

�e ¼ b
2�ltr Ix=y; ðB:52Þ

respectively. Consequently,

ei11 ¼ 1
2Aixy ½�e11 � �e22� þ 1

4

X2
j¼0

Ap
j;ixy

½rp
j11

� rp
j22
� ¼ �ei22 ;

ri11 ¼ Dixy ½�e11 � �e22� þ 1
2

X2
j¼0

Dp
j;ixy

½rp
j11

� rp
j22
� ¼ �ri22 :

ðB:53Þ
B.6. Thermal conditions

For the fields presented in Section 3.8, the average stresses at
every phase are given by the formulas

r1 ¼ 2Ktr
1N1;1 þ str1

� �
Ix�y þ 2l1N1;1 þ sax1

� �
Iz;

r2 ¼ ½Rx
2 þ Srxs

r
2 þ Shxs

h
2�Ix�y þ ½Rz

2 þ Srzs
r
2 þ Shzs

h
2 þ sz2�Iz;

r0 ¼ 2Ktr
0N0;1 þ str0

� �
Ix�y þ 2l0N0;1 þ sax0

� �
Iz;

ðB:54Þ
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with

Srx ¼ Lhh2 þLrh2
Lhh2 �Lrr2

; Shx ¼ 1� Srx;

Srz ¼ Lrz2 þLhz2
Lhh2 �Lrr2

; Shz ¼ �Srz:
ðB:55Þ

and Rx
2;R

z
2 are given by (B.13). Using the interface and boundary

conditions one obtains the linear system

K � N ¼ str1 F
tr
1 þ sr2F

r
2 þ sh2F

h
2 þ str0 F

tr
0 ; ðB:56Þ

where

N ¼ N1;1 N2;1 N2;2 N0;1 N0;2½ �T ;
F tr
1 ¼ 0 �1 0 0 0½ �T ;

Fr
2 ¼ X Srx �X �Srx 0

� �T
;

Fh
2 ¼ �X Shx X �Shx 0

� �T
;

F tr
0 ¼ 0 0 0 1 0½ �T ;

ðB:57Þ

and K is given by (B.16). The solution of the above system can be
written in the general form

N ¼ str1N
s1 þ sr2N

sr2 þ sh2N
sh2 þ str0N

s0 : ðB:58Þ
Assuming that the equivalent medium is subjected to the uniform
thermal stress

�r ¼ �rth ¼ �strIx�y þ �saxIz; ðB:59Þ
the relation (4)2 leads to
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1x s

tr
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0x s
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ðB:60Þ

where
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